Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration.

نویسندگان

  • János Hanics
  • Edit Szodorai
  • Giuseppe Tortoriello
  • Katarzyna Malenczyk
  • Erik Keimpema
  • Gert Lubec
  • Zsófia Hevesi
  • Mirjam I Lutz
  • Márk Kozsurek
  • Zita Puskár
  • Zsuzsanna E Tóth
  • Ludwig Wagner
  • Gábor G Kovács
  • Tomas G M Hökfelt
  • Tibor Harkany
  • Alán Alpár
چکیده

The rostral migratory stream (RMS) is viewed as a glia-enriched conduit of forward-migrating neuroblasts in which chemorepulsive signals control the pace of forward migration. Here we demonstrate the existence of a scaffold of neurons that receive synaptic inputs within the rat, mouse, and human fetal RMS equivalents. These neurons express secretagogin, a Ca2+-sensor protein, to execute an annexin V-dependent externalization of matrix metalloprotease-2 (MMP-2) for reconfiguring the extracellular matrix locally. Mouse genetics combined with pharmacological probing in vivo and in vitro demonstrate that MMP-2 externalization occurs on demand and that its loss slows neuroblast migration. Loss of function is particularly remarkable upon injury to the olfactory bulb. Cumulatively, we identify a signaling cascade that provokes structural remodeling of the RMS through recruitment of MMP-2 by a previously unrecognized neuronal constituent. Given the life-long presence of secretagogin-containing neurons in human, this mechanism might be exploited for therapeutic benefit in rescue strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Insights into the Distribution and Functional Aspects of the Calcium Binding Protein Secretagogin from Studies on Rat Brain and Primary Neuronal Cell Culture

Secretagogin is a calcium binding protein (CBP) highly expressed in neuroendocrine cells. It has been shown to be involved in insulin secretion from pancreatic beta cells and is a strong candidate as a biomarker for endocrine tumors, stroke, and eventually psychiatric conditions. Secretagogin has been hypothesized to exert a neuroprotective role in neurodegenerative diseases like Alzheimer's di...

متن کامل

Reelin Together with ApoER2 Regulates Interneuron Migration in the Olfactory Bulb

One pathway regulating the migration of neurons during development of the mammalian cortex involves the extracellular matrix protein Reelin. Reelin and components of its signaling cascade, the lipoprotein receptors ApoER2 and Vldlr and the intracellular adapter protein Dab1 are pivotal for a correct layer formation during corticogenesis. The olfactory bulb (OB) as a phylogenetically old cortica...

متن کامل

A secretagogin locus of the mammalian hypothalamus controls stress hormone release.

A hierarchical hormonal cascade along the hypothalamic-pituitary-adrenal axis orchestrates bodily responses to stress. Although corticotropin-releasing hormone (CRH), produced by parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) and released into the portal circulation at the median eminence, is known to prime downstream hormone release, the molecular mechanism regulating ...

متن کامل

Fascin regulates the migration of subventricular zone-derived neuroblasts in the postnatal brain.

After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is a fundamental event controlling the proper integration of new neurons in a pre-existing synaptic network. Many regulators of neuroblast migration have been identified; however, still very little i...

متن کامل

Clusters of secretagogin-expressing neurons in the aged human olfactory tract lack terminal differentiation.

Expanding the repertoire of molecularly diverse neurons in the human nervous system is paramount to characterizing the neuronal networks that underpin sensory processing. Defining neuronal identities is particularly timely in the human olfactory system, whose structural differences from nonprimate macrosmatic species have recently gained momentum. Here, we identify clusters of bipolar neurons i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 10  شماره 

صفحات  -

تاریخ انتشار 2017